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ABSTRACT

In this paper the alternate forms of the relative attitude kinematics and relative dynamics equations are
presented. These developments are different from the earlier developments that have been presented in other

publications. The current forms of equations have the advantage of being simpler than earlier ones. These equations

are applied in developing the necessary kinematics and dynamics for relative navigation in formation flying and

virtual platforms. These equations also have application in the implementation of nonlinear full state feedback and

nonlinear output feedback control for large attitude angle acquisition and tracking. This paper presents simulations
from such a full state feedback control application.

INTRODUCTION

Navigation and control for spacecraft flying in formation requires the relative attitude information. Since the
attitude rotation matrices and their kinematics relationships are generally defined in the inertial reference frame,

Ref. 1 was the first attempt at completely defming the kinematics and relative attitude dynamics when the attitude

matrix is defined in a non-inertial frame. While the concept of relative attitude had earlier been addressed in Refs.2-

4, Ref. 1 was the first publication to provide the complete development that is necessary for formation flying control.

This paper continues these developments, providing the relative attitude kinematics and dynamics that are

alternative to the forms developed in Ref. 1.

The attitude of a rigid-body with respect to the inertial frame is determined by a rotation transformation matrix

from the inertial frame to body frame. This rotation matrix is referred to as the attitude matrix. In practical design, as

noted in Ref.1, the attitude matrix is parameterized to be 4-dimension parameters such as axis/angle variables and

quatemion, and 3-dimension parameters such as Euler angles, Rodrigues (Gibbs vector) and modified Rodrigues.,

Similarly, rotation matrix of the body-frame with respect to a non-inertial frame can be defined as the relative
attitude matrix.

In developing the kinematics and dynamics of the relative attitude, Ref. 1 addressed the following:

i. Kinematics equations for relative attitude matrix

ii. Kinematics equations for relative attitude parameters

iii. Relative attitude dynamics equations

This paper proceeds along the same line, providing alternate solutions to the above items. The primary

difference in this approach results from a different definition of the relative angular velocity. This alternate form

provides simpler relative kinematics and dynamics equations than those in Ref. 1.

SYMBOLS

[dpl, dp2, dp3] the three components of relative modified Rodrigues parameters

[dwl, dw2, dw3] the three components of the relative angular velocity (rad/sec)
g Rodrigues parameter

p modified Rodrigues parameter
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REPRESENTATION OF RELATIVE ATTITUDE

Relative Attitude Matrix

It is assumed that any reference flame can be denoted by a vectrix 7. The following series of reference frames
can then be defined.

E:II:ll:lL:II:ll I 1 T l S l B l D

_, : 9-_ : _ : _ : _ : (1)

The attitude of a rigid spacecraft is the orientation of the referen?e frame with respect to another frame. The

most convenient reference frame is a dextral, orthogonal triad which is fixed with the rigid body of spacecraft. The

other reference frame can be an inertial reference frame, or it can be a moveable reference frame which is fixed to

another body. The attitude with respect to the inertial reference frame is the absolute attitude. The attitude with

respect to a movable rotting reference frame is the relative attitude, which is respect to a movable rotating reference
frame is named the relative attitude. For example in order to study the. orientation relationship between two rotating

reference frames, the relative attitude can be defined as a transformation matrix between two rotating reference
frames.

Parametric Representation of the Relative Attitude Matrix .

As with parametric representation of absolute attitude matrix (Refs.6-8), the relative attitude matrix can also be

represented by the attitude parameters such as Axis/angle, Quaternion, Rodrigues parameters (Gibbs vector),
modified Rodrigues parameters and Euler angles. The relationship between relative attitude matrix and absolute
attitude matrix is

-1

RBD(Pba) : RBz(pb) Rm(Pd) (3)

It is obvious that the relative attitude parameters gbdand absolute attitude parameters gh, ga have a nonlinear

relationship. This can be represented by the following tmified notation:

P_d : Pb@ P_' (4)
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wheretheruleofthenonlinearoperator ® is determined by composition rotation rule of the attitude parameters [6].
This operation will, therefore, be different for different attitude parameters.

For the modified Rodrigues parameters:

Poe = Po@ p_1

T x

PJ(Po rPb- 1) +Pb(1 -Pd Pd)-2[Pd ]Pb

T T _ T

+PdPoO0 Pb +zPdPb
(5)

For Rodigues parameters (Gibbs vector):

god: go@ g_1

×

go-gd + [go ]gd
T

1+go gd
(6)

For Quaternion parameters:

q0d : q0@qd -1 : x1qd4% -qb4q d +lqb ]qd

qO4qd4+qb qd ]

(7)

where

ill a3a21rqblilqd oq Od:[qod4] qo:[q04 ] qd: d4 a:2 [a×]: a3 0 1 (8)

[a3J I-a2 al

RELATIVE ATTITUDE KINEMATICS FOR ATTITUDE MATRIX

Equation (2) can be written as

JTrD = _J_RBD (9)

Taking derivative with respect to the inertial reference frame for both sides,

COdX'3_ D - +
dt B

(10)

Based on the differential roles for the vectrices (Ref.7), Eq.(10) can be developed as
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r x r __.rdRBo r x
(11)

In the body reference frame J-B, the kinematics equation for relative attitude matrix RBD will be

dRBD

dt B

x x x

- [(RBD0)a) ]RBD - [0)b]RBD=[(RBD0)d-%) ]RBD (12)

If relative angular velocity is defined as

T
0) : 0) - _d : "_B(0)b-RBD0)d)--bd --b

b
%d =(%-eeo0)e) (13)

the attitude kinematics equation for the relative attitude matrix (12) can be written the compact form in the body
reference frame _-B

dRBD

dt B (14)

Considering

RBDRDB = I (15)

the relative kinematics equation for RDB in Body reference frame 3- Bbecomes

dRDB b ×
- Roe[(%d ) ]

dtB
(16)

In the similar way, the kinematics equation for RDB in reference frame 9- D can be obtained:

dRDB _ [(0)db)×IRDB dRBo _ RBO[(0)_a)×1
dt D dt D

(17)

where

d
COdb= COd-RDBO3b (18)

Since
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dRBD dRBD dRBD " dRDB dRDB dRDB:RDB (19)
dt B - dt D - dt -RBD dt B - dt D - dt

these kinematics equations for relative attitude above can be represented in form of a theorem of relative attitude
kinematics:

Theorem of Relative Attitude Kinematics

The angular velocities of _-B, o_D with respect to the inertial reference frame are are cob ,cod, and

T T

co : o_% co = o_rbcod (20)--b --d

The relative attitude between the reference frames 4, o_-B, _JD are:

"_'B = RBI2_I _'D = eDf_-I _B = RBD_D (21)

The kinematics equations for RBD and RoB are:

• b x b x d × d x

RBD : -[(%a) ]RBD:[(COab) ]RBD=RBD[(COab)]:-RBD[(%d) ] (22)

f_DB b x b x d x d x: -RDB[(COab) ]:RoB[(%a) ]:RDB[(%a) ]:-RDB[(COdb) ] (23)

where

b b d d
03ba =(COb-RBDcod): -co db: - R BDcodb=R BD%d (24)

RELATIVE ATTITUDE KINEMATICS FOR ATTITUDE PARAMETERS

The First Kind of Relative Attitude Kinematics Equations

Based on the definitions of the relative attitude and relative angular velocity given above the relative attitude

kinematics equations for various attitude representation have been developed in Ref. 1. These equations are referred

to as the first kind of relative attitude kinematics equations, and are summarized as follows:

Quatemion

Relative kinematics equation

1 x b

qbd = _([qba]+qba4/)%,t
1. b -T

dtbd4 : -_t%3 qbd (25)
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Relativevelocity
b

O,)bd = 2( q bd4gl bd-(t bd4q bd-q bd×(l bd) (26)

Attitude transformation matrix

RBD
2 T T

= (qbd4-qbdqbd)I+2qbdqbd-2qbd4[qbdX] (27)

Rodrigues Parameters

Relative attitude kinematics equations

gbd = ([ L] _ bg + gbdgbd + ])O')bd (28)

Relative velocity

b 2 x .
oh,d - (I-[gba])gbd

T
(1 +gbdgbd)

(29)

Attitude transformation matrix

RsD - 1 ((1 -gbJgbd)I+2gbdgbJ-2[gbdX])
(1 +gbdrgba) (30)

Modified Rodrigues Parameter

Relative attitude kinematics equation

1

_-_[(1 T × T bP,,,_= -pbd)bd)I+2[pj +2pb_b'd]mbd (31)

Relative velocity

b

03bd

T T x
'+ [(1 -PbdPbd)+2Pb_bd-2[Pba]] Pbd
T 2

(1 + l__.,l& _)
(32)

Attitude transformation matrix

RBD -
1

[ ( l -6p _bd +_ _d%a)2)I + 8P adpr-4(1-pffdp ad)[P 2d]]
(I +;_J (33)
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The Second Kind of Relative Attitude Kinematics Equations

The relative kinematics equations are dictated by the definition of the relative angular velocity. Using the
following (alternate) definition of angular velocity

Aco=cob-co d

an alternate set of relative attitude kinematics are developed. These may be defined as the alternate (second) form of

relative attitude kinematics equations. It should be noted that in this case, the subscript of relative attitude are
replaced by the use of A.

Oumemion

Using the new notation, the first kind of relative kinematics equation in Quatemion can be written as

(3S)
dt

where

M: l[[Aq×]+Aq4 I]

2[ _Aqr j
(36)

Since

0) bd =(fOb-RBDO d) =A0_+(I- RBD)O)d (37)

the relative attitude kinematics Eq.(35) can be written as

tq =MAc0 +M( I- RBD)O_d (38)

where

RBD = (Aq2-Aq rAq)I+2AqAq r-2Aq4[Aqx] (39)

Because

M(I-RBD) : llLAq×]+Aq4-I[[ I] [(l_Aq2+Aq TAq)I-2AqAq T+2Aq4[Aqx]]

2[ _Aqr ]

Considering the following equality relationships for any 3 dimensional vector p:

(40)
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[p×][p×]+pTpi_pp r=03x 3 , p Tppp r=pp rpp r (41)

pp r[p ×]=03×3, [p ×]pp r=03×3 (42)

Eq.(40) can be simplified as follows:

M(I_Rso) :[ [Aq×]]

[0,×3J
(43)

Finally Eq.(38) can be simplified to obtain the second kind of relative attitude kinematics equations
in Quaternion :

dA_ I[[Aq_]+Aq4ZL_o_+[[Aq×]L

dt--2[-Aqr _ tO,x3 _a
(44)

Relative angular velocity:

Am = 2(Aq4Ao-Ao4Aq-AqxAgt)+(RsD(Aq)-l)o_ d (45)

Attitude transformation matrix:

ReD(A-q) : (AqZ-Aq rAq)I+2AqAq r-2Aq4[Aqx ] (46)

Rodrigues Parameters

Using new notation, the relative attitude kinematics equations can be written as

dAg =MAco +M( I- RBD)O_a
& (47)

where
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1

RBn - (1 +AgrAg) ((1-AgrAg)I4"2AgAgr-2[Ag×]) (48)

Applying equality relationship Eq.(41-42) simplifies the equation as

M(I-RBD) = l([Ag ×] + AgAg v + 0(I-
I

(1 +AgrAg) ((1 -AgrAg)I+2AgAgr-2[Ag ×]))

: [Ag×]

(49)

Substituting Eq.(49) into Eq.(47), the second kind of relative attitude kinematics equation in Rodrigues

parameters are obtained:

dAg _ l([Ag× ] + AgAgT + /)Ao+[Ag ×]Od
dt 2 (50) ",, .

Relative velocity:

AC0 -
2

(I-[Ag ×])Ag,+( R BD(Ag) - I)o_a
(1 +Ag 'Ag)

Attitude transformation matrix:

RBD(Ag ) =
(1+AgrAg)

(( 1 -Ag rAg)/+2AgAg r_2[Agx 1)

Modified Rodrigues Parameter

In a similar way, the second kind of relative attitude kinematics equations in modified Rodrigues parameters ,,:
can be written as

dAp
1[(1 -Ap rAp)I+2[Ap ×1+2ApAp rlAo +[Ap ×]cod (53) -:

I

dt

Relative velocity:

Am -
4

(1 +Ap rap)2
[(1 -Ap rAp)+2ApAp r-2[Ap ×]1 Af_+[RBD(AP)-I]o d (54)
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Attitudetransformationmatrix:

1 -6Ap rAp+(Ap TAp)2)I + 8ApAp T-4(1 -Ap TAp)[Ap ×]] (55)
RBD(Ap) - (1 +Ap rAp)Z[(1

RELATIVE ATTITUDE DYNAMICS EQUATIONS

The First Kind of Relative Attitude Dynamics Equations

It is assumed that Jb(t), COb(t),hb(t) and L are the inertial dyadics, angular velocity, angular momentum and the

applied angular moment of the chase satellite. Similarly, Jd(t), O__(t), _(t) and L_d are the corresponding items for

the target satellite. The relative angular velocity of the chase satellite body reference frame 3-B with respect to the

target satellite reference frame 3- D is defined as follows:

_bd=mb-md = _Bmbbd m_=(%-e_,%) (56)

The relative attitude dynamics equation in pursuer satellite body reference frame o_-B developed in Ref. 1 is

• b b x b x b b x b x

Jbmbd+[(mba) ]Jbmbd+[(RBDmd) ]Jb%d+[(%d) ]JbeBDmd-Jb[(mbd) ]RBDmd

• x

= Lb-R_d;d-R,_(M_d+[md]Aip_)
(57)

where

x

JC>d+ [md]J,_d:/;_ A] d : RDBJbRt_D-J d (58)

The Second Kind of Relative Attitude Dynamics Equations

Using the alternate definition of relative angular velocity:

Am =(0 b -md (59)

The relationship between O)bdand Am (the two definitions of relative angular velocity) is

mbbd=Am+(l-Rgd)md (6O)

Considering Eq.(59) and (60), the left hand terms of Eq.(57) can be developed as:

• b _ • • x + xJbmbd-JbAm+Jb(I-RBD)md+Jb[Am ]ReDed Jb[md]RBDmd (61)
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b x _ x x x x x

[(%g) ]Jb%d- [Am ]JaAm + [md]JaAm- [(RBDO)d) ]JbAm + [Am ]Jbmd- [Ao) ]JbRsDO)d

x x x x

+[O_d]Jbmd-[mdlJbRBDmd-[(RBDmd) ]Jbmd+[(RBDmd) ]JbRsDmd

(62)

b x _ x + x x[((Dbd) ]JbRBDO3d-[AO.) ]JbRBDO3d [Od]JbRBDO3d-[(RBDOJd) ]JbRBDmd (63)

x b x x x

[(RBDmfl ]Jb%d:[(RBDmd) ]JbAm+[(RBDmd) ]Jbmd-[(RBDma) ]JbRBDmd (64)

b x x x x

Jb[(%a) ]R_Dmd=Jb[Am ]RBDmd+Jb[md]RBDmd-Jb[(RBDma) ]RBDmd (65)

Substituting Eqs. (61-65) into Eq.(57) and re-arranging _:::

• x x . x x

JbAO) + [Aco ]JbAO) + [Am ]JbO)d=Zb(RBD-1)m d- [O)d]JbAO) - [O)d]Jbo.) d

+ [(RsDmd)×lJbRBDmd+Lb-RBDLd-RBD(AJd(_a+[md]AJdv_d) _,

(66)

where

z

J_d + [_d]J_d :/'a (67)

These are the second kind of relative attitude dynamics equation. The two equations may be summarized in terms of

a relative attitude dynamics theorem:

Theorem of Relative Attitude Dynamics

If the relative angular velocity is defined as

b

(.O bd=CD b-RBDO,) d (68)

then the first kind of relative attitude dynamics equation in the chase satellite body reference frame _o7-B is

.b b x b b x

Jbmbd+[(O)bd) ]JbO)bd+[(%d) ]JbRBDO)d

b x x b . x

:Jb[(mba) ]RBDmd-[(RBDmd) ]Jb%a+Lb-RBDLa-RBD(AJ_d+[md]AJ,[-oa)

(69)
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If the relative angular velocity is defined as

Af.o=(O b-fD d (70)

then the second kind of relative attitude dynamics equation in the _'B frame is

Jb,,X6_+[Aco ×lJbAo_ +[A_×lJb0_ d=Jb(RB_-l)6_ d- [C0dlJbAc0- [C0dlJbc%

+ [(RBDO_d)×]JbRBDCOd+Lb-RBz_Ld-RBD(AJaf_d+[O3_a]AJaCo3¢)
(71)

where

Md : RZ_eJbRaD-Jd (72)

×

Jd_d + [o_dlJPd : Ld (73)

APPLICATION TO LARGE ATTITUDE ANGLE ACQUISITION AND TRACKING CONTROL

An application of relative attitude kinematics and dynamics equations developed in this paper is the large angle

acquisition and tracking control. This section provides the simulations of such an application. The advantage in

using relative attitude is that the tracking control problem is converted into a regulator problem, simplifying the

control system design.

It is assumed that the second kind of relative kinematics and dynamics equations in modified Rodrigues

parameters are used for the acquisition and tracking control. The equations are as follows:

Relative kinematics equations:

dAp_ MAo)+[Ap×lcod (74)
dt

where

M = 1[(1-Ap rAp)I+2[Ap ×]+2ApAp T] (75)

The relative dynamics equations:

JA(_o+Ao3x JO3d+ AO3xJAo3=L (76)
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where

L:J_(e,o-0%-[41J_Am-[m_lJ¢o,

+ [(R,Dma)×]JbRBDmd+Lb-RBDLd-R_o(AJa(gd+[m_alAJdcoa)
(77)

The Lyapunov function V can be selected to be

V=KeA p TAp +lAmrjAm
2 (78)

where t_ is a positive constant. The time-derivative of Lyapunov function V is

V=ZKpAp rA/5+AmrjAd_ =Amr(ZKpM rAp+L) (79)

If

L=-2KM TAp-KaJAm (80)

then

V= -KaAmrjAm< 0 (81)

where K d is a positive constant. The closed loop system dynamics equation is

JAd) +AmxJmd +Am xJAm = -KaJAm-2KM rap (82)

Equation (81) implies that V(t)_< V(0), and therefore, that A p and A m are bounded. In addition, from Eq.(81)

V: -2KaAmJA63 (83)

so it can be seen that d2 V/dt 2 is bounded. Hence dV/dt is uniformly continuous [9]. Application of Barbalat's

lemma [9] then indicates that Am - 0 as t- oo.Considering the closed loop equation (82), it can be obtained that
Ap_0 as t- oo.Therefore, we have that (Ap, Am) - (0,0) as t _ co. It means that the nonlinear control law given by

Eq.(84)

L_:e_L_ -J_(e_,,-/)%+ [4]J_Am+[4]Jb%

-[(RBDma)×]JbRBDO3a+RBD(AJdf)a+[m×alzLIamd)-2KpMrAp-KaJAm
(84)

is a global asymptotically stable control law for the system given by Eqs.(74-77).
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SIMULATIONS

The Lyapunov nonlinear attitude control law has been used for large attitude angle acquisition and tracking

control for the EO-1/LandSat 7 formation. For this simulation the control is implemented using full state feedback

only. The simulations using measurement output feedback will be presented in future papers.
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Figure 1. Large Attitude Angle Acquisition and Tracking Control for EO-1/LandSat7

Formation using Full State Feedback

The initial conditions for this full state feedback simulations are as follows:

Maneuver angle = 70 deg.

Target satellite (Landsat 7) angular velocity = ( 0 00)r) T

Pursuer satellite (EO-1) angular velocity = ( 0.1c0 v 0.01c% 2c0 r )r

c% =angular velocity of the 705 km circular orbit

[dp 1, dp2, dp3] in Fig 1 are the three components of the relative attitude represented in the relative modified

Rodrigues parameters, and [dwl, dw2, dw3] are the three components of the relative angular velocity (rad/sec). In

this simulation, it is assumed that the attitude state vector is given and there no attitude measurement information

available for feedback control.

CONCLUSIONS

In this paper the alternate relative attitude kinematics and dynamics equations are developed for the various

attitude parametric representations. Compared with the first kind of relative attitude kinematics and dynamics

equations (Ref. 1), this has the advantage of being simpler. These developments will find ready application in the

problems of relative attitude determination and control, and will be very useful for spacecraft formation control and

relative navigation. As an example of such application, the Lyaptmov nonlinear control law for large attitude angle

acquisition and tracking has been developed and simulated for the EO-1/LandSat 7 formation. This simulation
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implemented the full state feedback control.
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